Wheel inequalitites for stable set polytopes

نویسندگان

  • Eddie Cheng
  • William H. Cunningham
چکیده

We introduce new classes of valid inequalities, called wheel inequalities, for the stable set polytope P G of a graph G. Each \wheel connguration" gives rise to two such inequalities. The simplest wheel connguration is an \odd" subdivision W of a wheel, and for these we give necessary and suucient conditions for the wheel inequality to be facet-inducing for P W. Generalizations arise by allowing subdivision paths to intersect, and by replacing the \hub" of the wheel by a clique. The separation problem for these inequalities can be solved in polynomial time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A construction for non-rank facets of stable set polytopes of webs

Graphs with circular symmetry, called webs, are relevant w.r.t. describing the stable set polytopes of two larger graph classes, quasi-line graphs [9,14] and claw-free graphs [8,9]. Providing a decent linear description of the stable set polytopes of claw-free graphs is a long-standing problem [10]. However, even the problem of finding all facets of stable set polytopes of webs is open. So far,...

متن کامل

On Non-Rank Facets of Stable Set Polytopes of Webs with Clique Number Four

Graphs with circular symmetry, called webs, are relevant for describing the stable set polytopes of two larger graph classes, quasi-line graphs [8, 12] and claw-free graphs [7, 8]. Providing a decent linear description of the stable set polytopes of claw-free graphs is a long-standing problem [9]. However, even the problem of finding all facets of stable set polytopes of webs is open. So far, i...

متن کامل

Almost all webs are not rank-perfect

Graphs with circular symmetry, called webs, are relevant w.r.t. describing the stable set polytopes of two larger graph classes, quasi-line graphs [8,12] and claw-free graphs [7,8]. Providing a decent linear description of the stable set polytopes of claw-free graphs is a long-standing problem [9]. Ben Rebea conjectured a description for quasi-line graphs, see [12]; Chudnovsky and Seymour [2] v...

متن کامل

On Non-Rank Facets in Stable Set Polytopes of Webs with Clique Number Four

Graphs with circular symmetry, called webs, are relevant for describing the stable set polytopes of two larger graph classes, quasi-line graphs [6,10] and claw-free graphs [5,6]. Providing a decent linear description of the stable set polytopes of claw-free graphs is a longstanding problem [7]. However, even the problem of finding all facets of stable set polytopes of webs is open. So far, it i...

متن کامل

On facets of stable set polytopes of claw-free graphs with stability number three

Providing a complete description of the stable set polytopes of claw-free graphs is a longstanding open problem since almost twenty years. Eisenbrandt et al. recently achieved a breakthrough for the subclass of quasi-line graphs. As a consequence, every non-trivial facet of their stable set polytope is of the form k ∑ v∈V1 xv+(k+1) ∑ v∈V2 xv ≤ b for some positive integers k and b, and non-empty...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 77  شماره 

صفحات  -

تاریخ انتشار 1997