Wheel inequalitites for stable set polytopes
نویسندگان
چکیده
We introduce new classes of valid inequalities, called wheel inequalities, for the stable set polytope P G of a graph G. Each \wheel connguration" gives rise to two such inequalities. The simplest wheel connguration is an \odd" subdivision W of a wheel, and for these we give necessary and suucient conditions for the wheel inequality to be facet-inducing for P W. Generalizations arise by allowing subdivision paths to intersect, and by replacing the \hub" of the wheel by a clique. The separation problem for these inequalities can be solved in polynomial time.
منابع مشابه
A construction for non-rank facets of stable set polytopes of webs
Graphs with circular symmetry, called webs, are relevant w.r.t. describing the stable set polytopes of two larger graph classes, quasi-line graphs [9,14] and claw-free graphs [8,9]. Providing a decent linear description of the stable set polytopes of claw-free graphs is a long-standing problem [10]. However, even the problem of finding all facets of stable set polytopes of webs is open. So far,...
متن کاملOn Non-Rank Facets of Stable Set Polytopes of Webs with Clique Number Four
Graphs with circular symmetry, called webs, are relevant for describing the stable set polytopes of two larger graph classes, quasi-line graphs [8, 12] and claw-free graphs [7, 8]. Providing a decent linear description of the stable set polytopes of claw-free graphs is a long-standing problem [9]. However, even the problem of finding all facets of stable set polytopes of webs is open. So far, i...
متن کاملAlmost all webs are not rank-perfect
Graphs with circular symmetry, called webs, are relevant w.r.t. describing the stable set polytopes of two larger graph classes, quasi-line graphs [8,12] and claw-free graphs [7,8]. Providing a decent linear description of the stable set polytopes of claw-free graphs is a long-standing problem [9]. Ben Rebea conjectured a description for quasi-line graphs, see [12]; Chudnovsky and Seymour [2] v...
متن کاملOn Non-Rank Facets in Stable Set Polytopes of Webs with Clique Number Four
Graphs with circular symmetry, called webs, are relevant for describing the stable set polytopes of two larger graph classes, quasi-line graphs [6,10] and claw-free graphs [5,6]. Providing a decent linear description of the stable set polytopes of claw-free graphs is a longstanding problem [7]. However, even the problem of finding all facets of stable set polytopes of webs is open. So far, it i...
متن کاملOn facets of stable set polytopes of claw-free graphs with stability number three
Providing a complete description of the stable set polytopes of claw-free graphs is a longstanding open problem since almost twenty years. Eisenbrandt et al. recently achieved a breakthrough for the subclass of quasi-line graphs. As a consequence, every non-trivial facet of their stable set polytope is of the form k ∑ v∈V1 xv+(k+1) ∑ v∈V2 xv ≤ b for some positive integers k and b, and non-empty...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 77 شماره
صفحات -
تاریخ انتشار 1997